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Abstract: Bioelectrical Impedance Analysis (BIA) is a widely used non-

invasive method for body composition assessment, including intracellular 

fluid (ICF) estimation. While traditional methods rely on empirical equations, 

machine learning (ML) offers a more robust and data-driven approach to 

enhance predictive accuracy. This study aims to develop and validate ML-

based models for ICF prediction. A dataset of 2,520 participants from the 

National Health and Nutrition Examination Survey (NHANES) was utilized 

to train and validate multiple ML algorithms, including Linear Regression 

(LR), Ridge Regression (RR), Random Forest (RF), Gradient Boosting (GB), 

AdaBoost (AB), Support Vector Regression (SVR), Decision Tree (DT), K-

Neighbors Regressor (KNR), Lasso Regression (LaR), and Neural Network 

(NN). Model performance was assessed using Mean Squared Error (MSE), R2 

score, precision, recall, and F1 score. Results indicate that Ridge Regression 

and Linear Regression outperformed other models, achieving the lowest MSE 

(~3,916) and the highest R² score (~0.964) on the validation dataset. This study 

demonstrates the potential of ML techniques in improving ICF estimation 

from BIA, offering a scalable and accurate alternative for body composition 

analysis. Future research will explore deep learning approaches and optimized 

feature selection to enhance predictive accuracy further. 

1. Introduction  

Body fluids are aqueous liquids that carry a wide range of solutes and metabolic products and 

contain the cellular and ionic components required for a healthy body. It controls body 

temperature, preserves electrolyte balance, and modifies normal osmotic pressure (Zhang et al. 

2019). A two-to-one ratio differentiates the total body fluid into two fluid compartments: the 

intracellular fluid (ICF) compartment and the extracellular fluid (ECF) compartment. An 

important component of the cytoplasm and cytosol, intracellular fluid is a material found inside 

live cells that is mostly composed of water and other compounds like dissolved ions. 

Approximately 40% of the body weight is made up of intracellular fluid. Unbalanced changes in 

body fluids are not only good indicators for identifying dehydration and water intoxication, but 
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they are also risk factors for a number of illnesses, including kidney ailments, diabetic 

ketoacidosis, cardiovascular disease in hemodialysis patients, and others. 

Body composition can be evaluated by bioelectrical impedance analysis (BIA), which enables the 

assessment of important body components such as total body fluid (ICF and ECF), fat mass, and 

fat-free mass (Mialich, Sicchieri, and Junior, n.d.). Despite being the most effective method for 

body composition assessment, the dual-energy X-ray absorptiometry (DEXA) approach has many 

drawbacks, including the size of the equipment and the costs of the measurement. This is the 

reason bioelectrical impedance analysis (BIA) has become a popular non-invasive alternative for 

body composition assessment in a variety of healthcare environments (Przytula and Popiolek-

Kalisz 2025).  

Advanced healthcare systems now heavily rely on machine learning and sensor technology 

(Liaqat et al. 2020). As intelligent, self-governing, and pervasive decision-making systems, they 

are anticipated to diagnose and treat illnesses. Since the model for intracellular fluid is relevant 

to the parameters obtained from bioelectrical impedance analysis, it becomes a significant 

problem to develop an accurate model based on the appropriate parameters. There has been some 

research on this topic, but no such model development using machine learning algorithms has 

been done so far. Therefore, the application of machine learning algorithms could provide the 

appropriate model based on the exact required parameters. Therefore, this study focuses on using 

a number of machine learning algorithms for the development and validation of the model, 

including Random Forest (RF), Gradient Boosting (GB), AdaBoost (AB), Support Vector 

Regression (SVR), Linear Regression (LR), Ridge Regression (RR), Lasso Regression (LaR), 

Decision Tree (DT), K-Neighbors Regressor (KNR), and Neural Network (NN). The aim of this 

research is to develop machine learning-based models for intracellular fluid estimation and 

evaluate the best-performing machine learning algorithms. 

In this study, new mathematical models for intercellular fluid with machine learning algorithms 

have been developed and presented, and the newly established models have been validated to 

provide clarity. The rest of the paper is organized in the following sections: Section 2 represents 

the materials and methods, Section 3 presents the results and discussion of the newly established 

models, Section 4 shows the contributions of the work, and Section 5 concludes the paper. 

2. Materials and Methods  

2.1 Subjects  

To develop the ICF model, a data set including 2520 participants (1,200 males and 1,320 females) 

was utilized. The database arrives from the National Health and Nutrition Examination Survey 

(NHANES), administered to US citizens from 2003 to 2004 (version 7, updated in July 2016) 

(Statistics 2016). The models were developed using 1275 participants (males and females). The 

established model was verified using the remaining 1245 participants (males and females). 

Several machine learning algorithms were used for predicting and validating the model of ICF 

using this data. Feature selection was based on domain knowledge and previous studies. Key 

features included age, height, BMI, impedance at 1 MHz, height squared resistance, and height 

squared impedance. These variables were chosen due to their established relevance in BIA-based 

body composition analysis. 
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2.2 BIA 

The Bioelectrical Impedance Analyzer (BIA) uses an 800-microamp current to assess the 
electrical resistance in the deeper layers of tissue of the human body (Waller and Lindinger 2006). 
BIA involves placing electrodes across a region of interest on multiple body regions of the person 
(Brantlov et al. 2017). With the first set of electrodes introduced to a safe, undetectable alternating 
electrical current (AC), the impedance meter measures the resistance of the body to the current 
passing through the second set of electrodes. Body fluids serve as resistors, while cell membranes 
act as capacitors. By dividing the injected alternating current into resistive (fluid and electrolytes) 
and capacitive (cell membranes and tissue interfaces) pathways, the body can be viewed as a 
parallel resistor-capacitor (RC) equivalent circuit in Figure 1.  (Chinen et al. 2015). 

 
Figure 1. (a) electrical conductance through the cell, (b) an equivalent circuit. 

2.3 Machine learning based algorithms 

To develop the model, a number of machine learning algorithms were used in this study. 

AdaBoost, Random Forest, Gradient Boosting, Support Vector Regression, Linear Regression, 

Ridge Regression, Lasso Regression, Decision Tree, K-Neighbors Regressor, and Neural 

Network are among the algorithms. ML models were selected based on their predictive power, 

interpretability, and computational efficiency. Linear Regression and ridge regression were 

chosen due to their strong performance in regression tasks. Tree-based models such as Random 

Forest and Gradient Boosting were included for their ability to capture non-linear relationships. 

Support Vector Regression and Neural Networks were tested to assess their applicability in ICF 

prediction. 

From these algorithms, model performance has been evaluated using the parameters mean 

squared error (MSE), mean absolute error (MAE), and R2 score. The classification metrics, such 

as precision, recall, and F1 score has also been computed for further validation of the model.  

Classification metrics and model performance parameters can be defined as below: 

Mean Square Error (MSE) = 
1

𝑛
∑ (𝑥𝑖 − 𝑥𝑖

^)2𝑛
𝑖=1  (1) 

Mean Absolute Error (MAE) =  
1

𝑛
 ∑ |(𝑥𝑖 −  𝑥𝑖

^)|𝑛
𝑖=1  (2) 

𝑅2 score = 1- 
∑ (𝑥𝑖−𝑥𝑖
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𝑖=1
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 (3) 

Precision = 
True Positive

True Positive+False Positive
 (4) 
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Recall = 
True Positive

True Positive+False Negative
 (5) 

F1 score = 
2∗Precision∗Recall

Precision+Recall
 (6) 

 

3. Result and Discussions  

3.1 Proposed Mathematical Models for ICF Measurement 

Two mathematical models have been developed to measure intracellular fluid. To develop the 

model, age, height, BMI, impedance at 1 MHz, height to impedance ratio, and height to resistance 

ratio have been considered as parameters.  

Prediction Equation (Linear Model): 

ICF = 1238.5245 + (-6.3048) * Age + (3.5925) * BMI + (-34.6848) * HT2 + 

(352.7262) * Z1M + (-2134.3120) * HT2R1M + (2200.5031) * HT2Z1M 
(7) 

Prediction Equation (Ridge Model): 

ICF = 1238.7675 + (-6.0871) * Age + (5.0681) * BMI + (-35.4050) * HT2 + 

(351.1390) * Z1M + (-143.0933) * HT2R1M + (207.5425) * HT2Z1M 
(8) 

 

3.2 Evaluation of Performance 

Table 1. Performance Evaluation of Different Machine Learning Models for Prediction 

A
lg

o
ri

th
m

s 

Machine Learning Algorithms 

Model performance Classification metrics 

Train Validation Train Validation 

R2 MSE R2 MSE Precision Recall 
F1 

score 
Precision Recall 

F1 

score 

LR 0.94 9000.16 0.96 3946.23 0.85 0.90 0.88 0.91 0.97 0.94 

RR 0.94 9204.43 0.96 3916.88 0.85 0.91 0.87 0.91 0.97 0.94 

RF 0.88 17685.37 0.85 16547.20 0.87 0.88 0.88 0.90 0.88 0.89 

GB 0.89 15665.89 0.89 15305.41 0.89 0.90 0.89 0.88 0.92 0.90 

AB 0.87 18951.54 0.91 17525.35 0.81 0.93 0.87 0.85 0.89 0.88 

SVR 0.23 119093.3 0.65 99873.26 0.81 0.88 0.84 0.79 0.86 0.87 

DT 0.79 31099.37 0.80 30479.89 0.84 0.87 0.85 0.87 0.89 0.75 

LaR 0.93 10674.94 0.90 11509.81 0.85 0.90 0.87 0.88 0.90 0.85 

KNR 0.86 20949.19 0.88 19309.11 0.87 0.88 0.88 0.89 0.92 0.89 

NN 0.63 55967.81 0.71 54875.01 0.85 0.63 0.72 0.86 0.75 0.78 

Shown in Table 1 that, the evaluation of machine learning algorithms shows Linear Regression 

(LR) and Ridge Regression (RR) as the best-performing models for both regression and 

classification. They achieved high R2 values (0.94–0.96) with low MSE (~9000 in training, ~4000 

in validation) and demonstrated strong classification metrics with F1-scores of 0.94 in validation. 

Ensemble models like Gradient Boosting (GB) and K-Nearest Neighbors (KNR) provided 
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competitive classification performance (F1-score ~0.89–0.90) but had higher MSE in regression, 

limiting their effectiveness in continuous predictions. Decision Trees (DT) exhibited overfitting, 

while Neural Networks (NN) and Support Vector Regression (SVR) performed poorly, struggling 

with both regression and classification tasks. Overall, LR and RR are the most reliable models 

for both tasks.  

It is seen from Figure 2. that the predicted models of linear regression and ridge regression almost 

resemble the actual values of ICF. So, the proposed models can be used for ICF estimation with 

good accuracy. 

4. Contributions 

This study made significant contributions to the field of bioelectrical impedance analysis (BIA) 

and machine learning applications in body composition prediction. Multiple machine learning 

models have been implemented and evaluated, identifying Ridge Regression and Linear 

Regression as the most effective for ICF prediction. The findings highlight the potential of 

machine learning in improving non-invasive body composition analysis, paving the way for more 

accurate, scalable, and accessible health monitoring solutions. 

 

 

5. Conclusion  

This study underscores the effectiveness of machine learning techniques in predicting ICF from 

BIA-derived metrics, demonstrating that Ridge and Linear Regression provide the best predictive 

accuracy. Our models achieved high R2 scores (>0.96) and low MSE values, making them highly 

Figure 2. Actual vs Predicted graphs for Linear and Ridge (best two) Models. 

5



   

 
 
 

 

reliable for body composition analysis. While other machine learning models, such as Random 

Forest and Gradient Boosting, performed well, they did not surpass the efficiency and 

interpretability of the regression-based approaches. The implications of this research are 

significant for health and nutrition assessment, offering a cost-effective and non-invasive method 

for monitoring body composition. Though ML models demonstrated improved predictive 

accuracy, certain limitations remain. The study relied on a dataset from NHANES, which may 

not fully represent diverse populations. Future work will expand the dataset to include diverse 

populations, explore deep learning approaches, enhance feature selection techniques, and 

incorporate of additional physiological markers to further improve prediction accuracy. 
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