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ABSTRACT 

In this paper a hexagonal microstructure photonic crystal fiber (PCF) is proposed for 

achieving both ultra high birefringence and large nonlinearity in a high speed transmission 

system. The full vector Finite Element Method (FEM) is used to study the characteristics of our 

proposed PCF. In this structure, circular air holes are arranged in the cladding and elliptical air 

holes are arranged in the core region. According to simulation, the proposed PCF structure has 

ultra high birefringence of 4.048×10
-2

, negative dispersion coefficient of - 817.3 ps/(nm.km) and 

nonlinear coefficient of 67.9 W
-1

km
-1

 at 1550 nm wavelength.  Due to ultra high birefringence, 

large nonlinearity and low dispersion, the proposed structure can be used for sensing, super-

continuum generation and dispersion compensation, respectively. 

Keywords: Photonic crystal fiber; Nonlinear coefficient; Ultra-high birefringence 

1. Introduction  

In recent years, Photonic crystal fiber have drawn significant attention due to their 

extraordinary optical properties such as ultra high birefringence, large effective mode area, large 

nonlinearity and low confinement loss [1-12] as compared to conventional fiber. Recently, many 

articles with different types of air holes arrangements are proposed for achieving high 

birefringence characteristics [13-14].  For example, Chen et al. have proposed an ultrahigh 

birefringent PCF of 1.5×10
-2

 by arranging elliptical air holes as hexagonal lattice in the fiber core 

but circular air holes as hexagonal lattice in the fiber cladding [13]. Wang et al. have designed 
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highly birefringence PCF (1.83×10
-2

) with rectangular air holes in the core region [14].  Recently 

we reported high birefringence of 3.37×10
-2

 by using four elliptical air holes and two semi 

circular air holes in the core region [15]. 

In high speed transmission systems and wavelength division multiplexing (WDM) dispersion 

is one of the major problem due to pulse broadening. Dispersion compensating fiber (DCF) is 

used to maintain the dispersion. Photonic crystal fibers have much flexibility for controlling the 

dispersive properties by changing the size of air-holes [16-19]. Conventional fiber offers 

negative dispersion coefficient of - 100 to – 300 ps/(nm.km) at operating wavelength of 1550 nm 

[20]. So far, several attempts have been taken by different groups to achieve high negative 

dispersion as well as low confinement loss. For example, Razzak et. Al. have reported an 

Octagonal MOF structure with negative dispersion coefficient of - 239.5 ps/(nm.km) and a 

hexagonal MOF structure with negative dispersion coefficient of - 562 ps/(nm.km) [21]. Habib et 

al.  have designed a hexagonal PCF which offers negative dispersion coefficient of - 300 

ps/(nm.km) at operating wavelength of 1550 nm [22]. 

Furthermore, highly birefringent PCFs with nonlinear properties have received much 

attention in sensing and super-continuum (SC) applications. In this paper, we propose a ultra 

high birefringence (4.048×10
-2

 at 1550 nm) photonic crystal fiber with large nonlinearity of 

67.9W
-1

km
-1

, low dispersion of - 817.3 ps/(nm.km) and ultra low confinement loss of 1.861×10
-

10
 dB/m by introducing six elliptical air holes as hexagonal lattice in the core region, which is 

suitable for the application of high bit rate transmission network,  sensing and super-continuum 

generation. In this study, the finite element method with perfectly matched boundary layer 

condition is used to analyze the various properties of PCF. 

2. Design Methodology 

Fig. 1 exhibits the distribution of air holes of the proposed PCF with elliptical air holes in the  

 

Fig. 1  Transverse cross section of proposed PCF where, pitch Λ=0.9µm, air hole diameter d/ Λ=0.75 and 

for elliptical air holes a1/ Λ =0.15, b1/ Λ=0.64, a2/ Λ =0.3 & b2/ Λ=0.45 
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core region which is designed using the tool Comsol 4.2. The structure has a hexagonal lattice of 

circular air holes in the cladding region. Where d is the air hole diameter of the 2
nd

 to 8
th

 ring.  In 

PCF, air hole to air hole spacing is called pitch, which is represented by Λ. The key material in 

our proposed structure is fused silica. To control the birefringence six elliptical air holes are 

proposed in the first ring with major axis b1/Λ = 0.64 and b2/Λ = 0.45, & the minor axis a1/Λ= 

0.15 and a2/Λ= 0.3. The outer region is designed with circular air holes with diameter d=0.75Λ. 

3. Numerical Method 

The To calculate the confinement loss, chromatic dispersion, effective area and nonlinear 

coefficient of the proposed PCFs, Finite Element Method (FEM) with perfectly matched layers 

(PML) boundary condition is used. We used Commercial full-vector finite-element software 

(COMSOL) 4.2 to find an accurate solution to boundary value problem. The effective refractive 

index corresponding to the operating wavelength of the fused silica is given by the following 

equation, known as Sellmeier equation.  


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Where bk is the Sellmeier coefficient. 

 

Dispersion is a common phenomenon in all type of fibers. For high speed transmission 

system, one of the major limiting factors is chromatic dispersion due to pulse broadening. The 

birefringence B, chromatic dispersion D(λ), and confinement loss Lc can be calculated by the 

following equations [23].  

 

)/]Re[(/)( 22  dndcD eff
                 (1) 

kmdBLc /10 ]Im[nk  8.686 3

eff0 
          (2) 

yx nnB 
                                                (3) 

where, nx and ny are the effective refractive index of x polarization and y polarization 

fundamental mode respectively,  Re[neff] and Im[neff] is the real part and imaginary part of 

effective refractive index neff  respectively, k0 is the free space number, λ  is the wavelength in 

vacuum, and c is the velocity of light in vacuum.     

The effective area Aeff of a photonic crystal fiber is expressed  as  [24]: 

 dxdyEdxdyEAeff

422
/)(

                       (4) 

where, Aeff is the effective mode area in μm
2
. Effective area is important for studying 

nonlinear case in optical fiber, microcavity [25-27] as well as photonic crystal fiber. The strength 

of nonlinearity in a photonic crystal fibers is the ratio between the nonlinear refractive index 

coefficient, n2 (Kerr constant), and the effective area for a given wavelength. The effective mode 
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area, Aeff is inversely proportional to the nonlinear coefficient,   and can be expressed as 

follows [28]: 

))(
2

( 2

effA

n




 

                                      (5) 

Depending on PCF structure and use of different materials, enhanced nonlinearity can be 

achieved.        

4. Simulation Results and Discussions 

Fig. 2 shows the chromatic dispersion characteristics as a function of wavelength of both x 

and y polarization with pitch Λ=0.9µm and d/Λ =0.75, where six elliptical air holes in 1st ring 

along the y axis is chosen as a1/ Λ =0.15, b1/ Λ=0.64, a2/ Λ =0.3 & b2/ Λ=0.45. From figure it 

has been observed that, our proposed PCF demonstrates large negative value of dispersion 

coefficient about – 817.3 ps/(nm.km) along the y polarization at operating wavelength 1550 nm. 

Due to large negative value of dispersion coefficient as compared with conventional fiber, our 

proposed PCF could be suitable contender for dispersion compensating in high speed 

transmission system.  
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                    (a)                                                                               (b) 

Fig. 2 (a) Wavelength dependence dispersion curve for slow axis (b) Effect of dispersion by varying the 

value of pitch Λ from ± 1% to ± 2% 

In PCF, during fabrication process ± 1% variation in pitch may be considered [29]. By 

considering fabrication difficulty, we have studied the impact on birefringence and dispersion by 

varying air hole to air hole spacing ± 1% to ± 2%, which is also discussed in this paper in the 

following section. 

Fig. 2(b) shows the effect of chromatic dispersion by varying the value of pitch Λ from ± 1% 

to ± 2%, while other parameters are kept constant. It has been observed that the value of 
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dispersion is increased negatively with decrease in the global diameter of pitch Λ. For the 

variation of pitch, Λ of +1%, the dispersion is -517.3 ps/(nm.km) at  1.34 μm and -871.9 

ps/(nm.km) at  1.64 μm. At, 1.55 μm for the variation of pitch Λ of +1%, a dispersion of -793.1 

ps/(nm.km) is obtained. The proposed structure offers optimum dispersion of -817.3 ps/(nm.km)  

at  operating wavelength of 1550 nm. 

Fig. 3(a) indicates the modal birefringence characteristics of the proposed PCF as a function 

of wavelength with the pitch 0.9 μm. From the figure it is observed that our proposed PCF shows 

ultra high birefringence about 4.048×10
-2 

at wavelength 1550 nm. Our proposed PCF is very 

effective in signal processing and sensing applications, and more specifically in high speed 

optical communication system due to having ultra high birefringence. The impact of pitch on 

birefringence is also shown in fig. 3(b). It can also be noted from figure that birefringence 

increases with the air hole to air hole spacing decreases, which is important for the application of 

polarization maintaining fiber. However, current conventional polarization maintaining fibers 

show a modal birefringence about 5×10
-4

 [30]. Moreover our proposed hexagonal PCF offer ultra 

high birefringence about 4.048 ×10
-2 

at the operating wavelength of 1550 nm, which could be a 

suitable choice  in sensing applications. 
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(a)                (b) 

Fig. 3 Birefringence as a function of wavelength for (a) optimum design parameters (b) by 

varying the value of pitch Λ from ± 1% to ± 2% 

Fig. 4(a) and 4(b) shows the effects of pitch variation on effective area and nonlinearity for 

wavelength range 1.34 μm to 1.7 μm. The optimum value of effective mode area of the proposed 

PCF is 1.91 µm
2 

at 1550 nm wavelength. The effective area increases with increase in the pitch. 

At 1550 nm the effective area is calculated to be 1.924 µm
2
, 1.938 µm

2
, 1.897 µm

2 
, and 1.885 

µm
2
 for the variation of pitch +1%,+2%, -1%, and -2%, respectively.  
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The proposed structure shows large nonlinearity as effective area is inversely proportional to 

nonlinearity. Large nonlinearity of 67.9W
-1

km
-1

 is achieved at 1550 nm wavelength which 

increases with decreasing the air hole to air hole spacing. The large value of nonlinearity is 

remarkably well enough for the application of   super continuum generation [25]. 
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Fig. 4 (a) Wavelength dependence effective area (b) nonlinear coefficient (c) confinement loss 

curve of our proposed H-PCF for optimum design parameters 

Fig.4(c) shows the wavelength dependence properties of confinement loss with the optimum 

parameter of the pitch 0.9 μm. The confinement loss is very small in the order of 10
-10

 for the 

proposed structure. At 1550 nm wavelength, the optimum value of confinement loss is 1.861×10
-

10
 dB/m. The obtained value of confinement loss is better than in [13].  
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              (a)                                                                   (b) 

Fig. 5 The optical Field distributions of fundamental modes at 1550 nm for (a) x-polarization and 

(b) y-polarization 

Fig. 5 shows the electric field distribution of our proposed PCF with pitch 0.9 μm at the 

excitation wavelength of 1.55μm for both x and y polarization modes. It is clearly seen from fig. 

5. that both x and y polarization modes are strongly confined  inside the core region due to that 

the core of our proposed structure is more effectively enclosed by the 1
st
 ring elliptical air holes. 

Thus our proposed design is unique as compared with others design because rectangular PCF 

have higher birefringence, compared to our results, but the confinement loss reported in our case 

is very small and low dispersion is obtained. We also found large nonlinearity in our proposed 

PCF.  The combination of large nonlinearity and low dispersion is an added advantage for the 

generation of super-continuum. 

Table 1 Comparison between properties of the proposed PCF and other PCF at 1550 nm 

PCFs Comparison of modal properties  

D(λ) 

Ps/(nm.km) 

B=|nx–ny| Aeff 

(µm
2
) 

γ 

(W
-1

km
-1

) 

Ref. [22] -300 ------ 1.55 ---- 

 
Ref.  [30] -588 1.81×10

-2 
3.41 ------ 

Ref.  [31] -474.5 ------ 1.60 ------ 

Ref.  [32] -562 3.06×10
-2 

2.08 63.3 

Ref.  [33] ----- 1.75×10
-2

 3.248 39.933 

Proposed PCFs - 817.3 4.048×10
-2

 1.91 67.9 
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5. Conclusion 

In conclusion, we have proposed a novel hexagonal PCF to obtain both ultra-high 

birefringence and large nonlinearity with low confinement loss. From the numerical results, 

negative dispersion coefficient of about – 543.2 to – 891 ps/(nm.km) is successfully achieved for 

wavelength range 1.34 μm to 1.7 μm. The  noble feature of our proposed designed fiber is that it 

offers ultra high birefringence as 4.048×10
-2 

along with the property of large nonlinearity of 

about 67.9 W
-1

km
-1

 and relatively very small confinement loss of about 1.861×10
-10

 dB/m at the 

operating wavelength of 1550 nm. Due to having ultra high birefringence, large nonlinearity and 

low confinement loss, our proposed PCF would be a suitable candidate for nonlinear optical 

applications including sensor applications, super-continuum generation, dispersion compensation 

and high bit rate transmission network. 
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